Integrating Poisson manifolds via stacks
نویسنده
چکیده
A symplectic groupoid G. := (G1 ⇉ G0) determines a Poisson structure on G0. In this case, we call G. a symplectic groupoid of the Poisson manifold G0. However, not every Poisson manifold M has such a symplectic groupoid. This keeps us away from some desirable goals: for example, establishing Morita equivalence in the category of all Poisson manifolds. In this paper, we construct symplectic Weinstein groupoids which provide a solution to the above problem (Theorem 1.1). More precisely, we show that a symplectic Weinstein groupoid induces a Poisson structure on its base manifold, and that to every Poisson manifold there is an associated symplectic Weinstein groupoid.
منابع مشابه
Geometry of Maurer-Cartan Elements on Complex Manifolds
The semi-classical data attached to stacks of algebroids in the sense of Kashiwara and Kontsevich are Maurer-Cartan elements on complex manifolds, which we call extended Poisson structures as they generalize holomorphic Poisson structures. A canonical Lie algebroid is associated to each Maurer-Cartan element. We study the geometry underlying these Maurer-Cartan elements in the light of Lie alge...
متن کاملIntegrability of Poisson Brackets
We show that various notions of integrability for Poisson brackets are all equivalent, and we give the precise obstructions to integrating Poisson manifolds. We describe the integration as a symplectic quotient, in the spirit of the Poisson sigma-model of Cattaneo and Felder. For regular Poisson manifolds we express the obstructions in terms of variations of symplectic areas. As an application ...
متن کاملNo : 15 Title : ‘ Quantization of Planck ’ S Constant
This paper is about the role of Planck’s constant, h̄, in the geometric quantization of Poisson manifolds using symplectic groupoids. In order to construct a strict deformation quantization of a given Poisson manifold, one can use all possible rescalings of the Poisson structure, which can be combined into a single “Heisenberg-Poisson” manifold. The new coordinate on this manifold is identified ...
متن کاملiv : d g - ga / 9 60 50 03 v 1 5 M ay 1 99 6 Flux homomorphism on symplectic groupoids ∗
For any Poisson manifold P , the Poisson bracket on C∞(P ) extends to a Lie bracket on the space Ω(P ) of all differential one-forms, under which the space Z(P ) of closed one-forms and the space B(P ) of exact one-forms are Lie subalgebras. These Lie algebras are related by the exact sequence: 0 −→ R −→ C∞(P ) d −→ Z(P ) f −→ H(P,R) −→ 0, where H(P,R) is considered as a trivial Lie algebra, an...
متن کاملPoisson structure and invariant manifolds on Lie groups
For a discrete mechanical system on a Lie group G determined by a (reduced) Lagrangian we define a Poisson structure via the pull-back of the Lie-Poisson structure on g∗ by the corresponding Legendre transform. The main result shown in this paper is that this structure coincides with the reduction under the symmetry group G of the canonical discrete Lagrange 2-form ωL on G×G. Its symplectic lea...
متن کامل